
The following are lecture notes put together for a final presentation in 21849 - Arithmetic Statistics on
Selberg Sieves from Kevin Ford’s notes on Sieve Methods. Extra care has been put into the clarity of
proof, especially for people with limited analytic number theory experience (me).

1 Preliminary Setup

1.1 Recall From Last Class...

• Relevant Notation:

– P (z): set of positive square free integers composed of only primes ≤ z .

– P+(n) : largest prime factor of n

– ω(n): number of distinct prime factors of n

– Ω(n): number of prime factors of n counted with multiplicity

– µ(n): Möbius’s function: (−1)ω(n), supported on n squarefree

• A is our sieve problem, z is our ’sieving bound’

• We defined Ad = ∩p|dAp = M Pr{Ad}

• By incl. excl.
S(A, z) =

∑
d∈P (z)

µ(d)Ad

where P counts the number of square free integers made of primes ≤ z

• We approximate the sieve by choosing X ∼ M, multiplicative function g st

Ad ≈ Xg(d)

where our error for each d is
rd = Ad −Xg(d)

• The level of distribution for a sifting problem A is the largest D for which∑
d≤D,d∈P (z)

|rd | ≤ εXV (z)

for a chosen small ε > 0.

• An upper bound sieve is a sequence λ+ = (λ+d ) supported on squarefree integers d which satisfies
the conditions that λ+1 = 1 and

∑
d |m λ

+
d ≥ 0 for all m > 1.

• By Lemma 1.2, it follows that for any upper bound sieve, S(A, z) ≤
∑
d∈P (z) λ

+
d Ad

1.2 Setting up an Upperbound

The Selberg Sieve constructs an upperbound for S(A, z) by careful construction of an upper bound sieve
λ+, starting with a general construction using any real-valued function λ s.t. λ(1) = 1.

1.2.1 Λ2 Sieve

Let us construct our upper bound sieve. Given any λ real valued function, supported on squarefree
numbers, where λ(1) = 1, consider the function λ+d :=

∑
[d1,d2]=d

λ(d1)λ(d2). Note this is also only
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supported on square free numbers as if d is not squarefree and d = [d1, d2] for some d1, d2 then at least
one of d1, d2 must also be not squarefree and thus every summand would be 0. Next, by construction,
λ+1 = λ(1)λ(1) = 1. Finally, see that for every m > 1,∑

d |m

λ+d =
∑
d |m

∑
[d1,d2]=d

λ(d1)λ(d2)

=
∑
d |m

∑
d1,d2

1[d1,d2]=dλ(d1)λ(d2)

=
∑
d1,d2

λ(d1)λ(d2)

∑
d |m

1[d1,d2]=d


=
∑
d1,d2

λ(d1)λ(d2)1[d1,d2]|m

=
∑
d1,d2

λ(d1)λ(d2)1d1,d2|m

=
∑
d1,d2|m

λ(d1)λ(d2) =

∑
d |m

λ(d)

2 ≥ 0
Thus we have found that

λ+d :=
∑

[d1,d2]=d

λ(d1)λ(d2)

for any λ real valued function, supported on square free numbers, where λ(1) = 1, is an upper bound
sieve. This is known as the Λ2 Sieve.

2 Upperbounding S(A, z)

First, assume (g), (r) exist as defined from the last class.

Then, by the lemma from the previous class, and given m =
∏
p≤z p, we have for any λ real valued

function, supported on square free numbers, where λ(1) = 1, P+(n) is the largest prime factor of n,

S(A, z) ≤
∑
d∈P (z)

λ+d Ad

=
∑
d |m

λ+d Ad

=
∑
d |m

∑
[d1,d2]=d

λ(d1)λ(d2)Ad

=
∑
d |m

∑
d1,d2

1[d1,d2]=dλ(d1)λ(d2)Ad

=
∑
d1,d2

λ(d1)λ(d2)A[d1,d2]

∑
d |m

1[d1,d2]=d


=
∑
d1,d2

λ(d1)λ(d2)A[d1,d2]1[d1,d2]|m

=
∑
d1,d2

λ(d1)λ(d2)A[d1,d2]1d1,d2|m
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=
∑
d1,d2|m

λ(d1)λ(d2)A[d1,d2]

=
∑
d1,d2

P+(d1),P
+(d2)≤z

λ(d1)λ(d2)A[d1,d2]

=
∑
d1,d2

P+(d1d2)≤z

λ(d1)λ(d2)A[d1,d2]

Now, we use our previous framework approximating S(A, z) through choice of X, g, whereby upperbound-
ing the error,∑

d1,d2
P+(d1d2)≤z

λ(d1)λ(d2)A[d1,d2] ≤ X
∑
d1,d2

P+(d1d2)≤z

λ(d1)λ(d2)g([d1, d2]) +
∑
d1,d2

P+(d1d2)≤z

∣∣λ(d1)λ(d2)r[d1,d2]∣∣
=: XG + R

and our understated goal is now to minimize XG +R, which is quite hard. To work towards this, we will
limit the support of λ, which will make G much easier to minimize.

2.1 Restricting the support of λ

Our first observation for minimizing G is that we can ignore any g(p) = 0. Recall that g is a multiplicative
function over the primes, so any such values contribute nothing. Shorthand

P =
∏

p≤z,g(p)>0

p

and then restrict the support of λ(d) to d | P . Then, define

h(d) =

{∏
p|d

g(p)
1−g(p) d | m

0 otw.

and note that by construction, h is multiplicative and nonnegative. Inverting the above for m | P,

1

g(m)
=
∏
p|m

1

g(p)
=
∏
p|m

(
1 +
1− g(p)
g(p)

)
=
∏
p|m

(
1 +

1

h(p)

)
=
∑
d |m

1∏
p|d h(p)

=
∑
d |m

1

h(d)

Then, by the multiplicativity of g and the fact that for any d1, d2 | P , (d1, d2) | P and so g((d1, d2)) > 0,
we can write

g([d1, d2])g((d1, d2)) = g(d1)g(d2) =⇒ g([d1, d2]) =
g(d1)g(d2)

g((d1, d2))

Then, we can rewrite G, where m = (d1, d2) as

G =
∑

P+(d1d2)≤z

λ(d1)λ(d2)g([d1, d2])

=
∑
d1,d2|P

λ(d1)λ(d2)
g(d1)g(d2)

g((d1, d2))

=
∑
d1,d2|P

λ(d1)λ(d2)g(d1)g(d2)
∑

d |(d1,d2)

1

h(d)
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=
∑
d1,d2|P

λ(d1)λ(d2)g(d1)g(d2)
∑
d |P

1d |(d1,d2)
1

h(d)

=
∑
d |P

1

h(d)

∑
d1,d2|P

λ(d1)λ(d2)g(d1)g(d2)1d |(d1,d2)

=
∑
d |P

1

h(d)

∑
d1,d2|P
d |(d1,d2)

λ(d1)λ(d2)g(d1)g(d2)

=
∑
d |P

1

h(d)

∑
d |d1,d2

λ(d1)λ(d2)g(d1)g(d2)

=
∑
d |P

1

h(d)

∑
d |m

λ(m)g(m)

2

Recall that the support of λ(d) is only for d | P . Now define,

ξ(d) =
µ(d)

h(d)

∑
d |m

λ(m)g(m)

supported on d | P, d ≤
√
D so that we can write G as a quadratic in λ(d) as

G =
∑
d |P

h(d)

µ(d)2
ξ(d)2 =

∑
d |P

h(d)ξ(d)2

The inclusion of µ is for inversion purposes. First, let us start with proving a simple identity about the
Möbius function. Note we can express for all n ≥ 1,

1 =
∑
d |n

1d=1

and thus by Möbius inversion, 1m=1 =
∑
d |m µ(d). Now see that for ℓ | P ,∑

k

h(kℓ)ξ(kℓ) =
∑
k

µ(kℓ)
∑
kℓ|m

λ(m)g(m)

= µ(ℓ)
∑
k

µ(k)
∑
kℓ|m

λ(m)g(m)

= µ(ℓ)
∑
ℓ|m

λ(m)g(m)

∑
k|m/ℓ

µ(k)


= µ(ℓ)

∑
ℓ|m

λ(m)g(m)1m=ℓ

= µ(ℓ)λ(ℓ)g(ℓ)

Then, for ℓ | P,

λ(ℓ) =
1

µ(ℓ)g(ℓ)

∑
k

h(kℓ)ξ(kℓ) =
µ(ℓ)

g(ℓ)

∑
ℓ|d

h(d)ξ(d)

We use the Cauchy-Schwarz Inequality to minimize G,

1 = λ(1)2 =

 ∑
d≤
√
D

h(d)1/2ξ(d)h(d)1/2

2 ≤
 ∑
d≤
√
D

h(d)ξ(d)2

J = GJ
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for J =
∑
d≤
√
D

h(d) where equality holds iff ξ(d) = 1
J

for every d ≤
√
D, d | P . That is, ξ(d) is constant.

Then,

λ(ℓ) =
µ(ℓ)

g(ℓ)

∑
ℓ|d

h(d)ξ(d)

=
µ(ℓ)

Jg(ℓ)

∑
ℓ|d≤

√
D

h(d) =
µ(ℓ)h(ℓ)

Jg(ℓ)

∑
m≤
√
D/ℓ,(m,ℓ)=1

h(m)

Thus, we get GJ = 1 ⇐⇒ G = 1
J

and so

S(A, z) ≤
X

J
+ R

2.2 Handling R

If we can upperbound λ(ℓ), then we upperbound R wrt |rℓ|.

Indeed, first observe that for any ℓ ≥ 1, we can partition J into a double sum based on (d, ℓ):

J =
∑
k|ℓ

∑
d≤
√
D,(d,l)=k

h(d) =
∑
k|l

h(k)
∑

m≤
√
D/k,(m,l/k)=1

h(m)

we can lower bound this sum by restricting the inner sum further for m ≤
√
D/ℓ and (m, ℓ) = 1, which

also removes the dependence on the outer sum.

∑
k|l

h(k)
∑

m≤
√
D/k

(m,l/k)=1

h(m) ≥

∑
k|ℓ

h(k)

 ∑
m≤
√
D/ℓ

(m,ℓ)=1

h(m)

=

∑
k|ℓ

h(
ℓ

k
)

 ∑
m≤
√
D/ℓ

(m,ℓ)=1

h(m)

= h(ℓ)

∑
k|ℓ

1

h(k)

 ∑
m≤
√
D/ℓ

(m,ℓ)=1

h(m)

=
h(ℓ)

g(ℓ)

∑
m

h(m)

By plugging this lower bound into our definition for λ(ℓ) = µ(ℓ)h(ℓ)
Jg(ℓ)

∑
m h(m), we will get that λ(ℓ) = cµ(ℓ)

for a constant 0 ≤ c ≤ 1, and thus |λ(ℓ)| ≤ 1 for all ℓ. It follows that

R ≤
∑

d1,d2≤
√
D,P+(d1d2)≤z

∣∣r[d1,d2]∣∣ ≤ ∑
d≤D,P+(d)≤z

3ω(d)|rd |

where ω(d) is the number of distinct prime factors of d . The last inequality holds by our choice to
decompose d ’s factors into d1, d2, where each factor is assigned as d1, d2, or both.

Our minimization is complete, and we have the following result,
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Theorem 2.1: Selberg’s sieve

Let A be a sieve problem, and assume (g), (r). Let z ≥ 2 and D ≥ 1. Then,

S(A, z) ≤
X

J
+

∑
d≤
√
D,P+(d)≤z

3ω(d)|rd |

where J =
∑
n≤
√
D µ

2(n)h(n), and h is the multiplicative function on primes p ≤ z by h(p) = g(p)
1−g(p)

3 Tight Selberg for General Sieves

Lemma 3.1: Selberg’s sieve is best possible in dimension 1

For general sieve problems, Selberg’s upperbound sieve cannot be improved.

Proof. Recall Selberg’s example
A = {n ≤ x : λ(n) = −1}

where λ(n) = (−1)Ω(n) and set X = x/2
Previously we saw by the Prime Number Theorem,

Ad =
∑
d≤x

1− λ(d)
2

=
x/2

d
+O

(x
d
e−c
√
lg(x/d)

)
(c > 0)

We treat the big O term here as our error term, where we bound

|rd | ≪
x

d
e−c
√
lg(x)

for every d ≤ x.
We want to make use of Selberg’s sieve, so put g(d) = 1

d
for d ∈ P (z).

Then, h(p) = 1
p−1 , p ≤ z, and so take z =

√
D = x

1
2
−ε(x) where ε(x) = 1

lg lg x
. For these parameters,

the error is bounded by

∑
d≤D

µ2(d)3ω(d)|rd | ≪
∑
d≤D

x

d
e−c
√
2ε(x) lg(x)µ2(d)3ω(d)

= xe−c
√
2ε(x) lg(x)

∑
d≤D

µ2(d)3ω(d)

d

≪
x

lg10 x

∏
p≤x

(1 + 3/p)

≪
x

lg10 x

(∏
p≤x

(1 + 1/p)

)3
=
x

lg7 x

where the second to last inequality holds by the multiplicative representation of picking each prime in
the 3ω(d) term and D ≪ x .
Now, the value of J,

J =
∑
n≤
√
D

µ2(n)h(n)
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=
∑
n≤
√
D

µ2(n)

n − 1 =
∑
n≤
√
D

µ2(n)

φ(n)

It is proven earlier in the section that ∑
n≤
√
D

µ2(n)

φ(n)
≥
1

2
lg x

by seeing that ∑
n≤x

1

n − 1 ≥
∫ ⌊x+1⌋
1

dt

t
≥ lg x

and by Selberg,

S(A, z) ≤
x

(1− 2ε(x)) lg x +O
(
x

lg2 x

)
∼
x

lg x
(x →∞)

For general sieves, we know

S(A,
√
x) = π(x)− π(

√
x) + 1 ∼

x

lg x

so this upperbound cannot be improved with different dimension.

4 Applications

We briefly describe some upperbounds on sieves we derive with Selberg’s results.

4.1 Twin Primes
Theorem 4.1: Twin Prime Upperbound

Let k be an even, positive integer. Then, uniformly in k ≤ x,

#{p ≤ x : p + k prime} ≤ C
∏
2<p|k

(
p − 1
p − 2

)
x

log2 x

(
4 +O

(
lg2 x

log x

))
where

C = 2
∏
p

(
1−

1

(p − 1)2

)
≈ 1.32

is the twin prime constant.

Proof. (setup)
Our problem is A = {p + k : p ≤ x}, where we choose D = x

1
2 lg−B x for sufficiently large B.

We set g(p) = 1
p−1 for p ̸| k , so h(p) = 1

p−2 .
Then, apply the Selberg Sieve.

4.2 Brun-Titchmarch Inequality

Recall the previously derived upperbound:
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Theorem 4.2: Brun-Titchmarch Inequality V.1

There is a constant C so that uniformly, for 1 ≤ a ≤ q < y ≤ x and (a, q) = 1,

π(x ; q, a)− π(x − y ; q, a) ≤ C
y

φ(q) log(y/q)

With Sieve we find a finer grain bound.

Theorem 4.3: Brun-Titichmarch Inequality V.2

For x ≥ y ≥ q ≥ 1 and (a, q) = 1, we have

π(x ; q, a)− π(x − y ; q, a) ≤
2y

φ(q) log(5y/q)

(
1 +O

(
lg(5y/q)

log(5y/q)

))
where π(x ; q, a) is the number of primes p ≤ x st p ∼= a mod q
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